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The two-stage integral sorption data for water vapour in a glassy poly(2-hydroxyethyl methacrylate) 
(PHEMA) membrane are analysed by the variable-surface concentration model, the diffusion relaxation 
model, and the diffusion-reaction model. Satisfactory fitting of the data and similar kinetic and equilibrium 
parameters are obtained using these models. The diffusion coefficient for water is about 5.0 x 10 _7 cm 2 s -I 
in the glassy polymer at 37°C and is near 1.5-2 times higher as the polymer goes over the glass-rubber 
transition region due to water sorption. The relaxation rate constant is between 1.0 and 5.1 x 105 s -1 and is 
increased as the sorbed concentration or the vapour activity of water increases. The equilibrium ratio 
constant is between 0.15 and 0.21 for the cases in which the polymer is characterized to be in the glassy state, 
and between 0.06 and 0.1 for the case in which the polymer passes the glass-rubber transition. When the 
two-stage sorption prevails, the diffusion-relaxation model approximates the limiting cases of the other two 
models. The diffusion-reaction model, based on Fickian diffusion and a reversible first order reaction 
kinetics for the penetrant transfer between the immobilized and mobile modes, is superior to the other two in 
terms of completeness of description of physical phenomena. Copyright ~: 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

It is well known that non-Fickian sorption is a common 
behaviour for a polymer-penetrant system below its glass 
transition temperature I 3. The slow relaxation of the 
polymer chains due to sorption of  penetrant is used to 
interpret the anomalies in the sorption kinetics. When a 
penetrant enters the polymer matrix, motions of whole or 
portions of glassy polymer chains are not sufficiently rapid 
to completely homogenize the penetrant's environment. 
Penetrants can thus potentially rest in holes or irregular 
cavities with very different intrinsic diffusional mobilities 3. 

The relative magnitude of the rates of  diffusion and 
relaxation processes is a major factor determining the 
anomalous effects in polymer-penetrant  diffusion. A 
diffusion Deborah number was proposed by Vrentas 
et al. 4 to characterize the quantity. This dimensionless 
number is defined as 

)~m (DEB)D = ~ (l) 

where/~m is the characteristic time of the relaxation and 
0D the characteristic diffusion time given by LZo/D, with 
Lo the sample dimension in the direction of transport 
and D the diffusion coefficient. A general definition of  
the characteristic time Am was given by Vrentas and 
coworkers 4-6, but a simplified one will be considered 
here. If  the relaxation follows a first-order kinetics 7-1°, 
the characteristic time A m is represented by the reciprocal 
of  the first-order rate constant k. The diffusion Deborah 

number can be expressed as 

D 
(DEB)D = h" ~ (2) 

Which is actually the ratio of the diffusion rate of a 
penetrant to the relaxation rate of the polymer system 
with a dimension Lo. When both the rates of diffusion 
and relaxation are similar in magnitude, anomalous 
diffusion takes place in the polymer matrix. On the 
other hand, when one of  them is much larger than the 
other, Fickian diffusion will dominate. For  (DEB)D >> 1, 
the diffusion is much faster than the response of the 
polymer relaxation and the glassy state is preserved, 
the 'elastic' Fickian diffusion prevails. While for 
(DEB)D << 1, the polymer relaxes to a rubbery state in 
a speed much faster than the diffusion of the penetrant, 
the 'viscous' Fickian diffusion is expected. If (DEB)D is of  
the order of unity, the diffusion process can be described 
as 'viscoelastic' 11,~2. 

Two-stage sorption is one of the notable non-Fickian 
features of  glassy polymer system, and it has been 

7 15 observed by many authors . In Part I of  this series, we 
also observed the two-stage sorption from an integral 
sorption experiment of water vapour in a glassy PHEMA 
membrane 16. An effort was attempted to correlate the 
data with available mathematical models to track down 
the kinetic and equilibrium parameters of  the system. 
The variable surface-concentration model proposed by 
Long and Richman v gave a satisfactory fitting of the 
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experimental data 17. In a continuation of this effort, it 
has been found that the diffusion-relaxation model 
proposed by Berens and Hophenberg s and the diffu- 
sion-reaction model 1°'18 also gave similar results. 

In this paper, mathematical analysis of our experi- 
mental data by these models is reported. A unified 
approach in formulating these models is presented, 
and the transport of the system can be characterized 
by several dimensionless numbers as defined in this 
approach. By comparing some similar and different 
features of these three models, a general discussion of the 
advantages and limitations of these models is presented. 

THEORETICAL MODELS 

Variable surface-concentration model (Model I) 
This model was proposed by Long and Richman 7, and 

was probably the first one to provide a reasonable 
explanation for two-stage sorption behaviour. 

According to the Fick's second law, the diffusion 

The boundary conditions are: 

{ C = C 0 + ( C ~ - C 0 ) ( 1 - e  k,) x = L  
t >_ o o c  o (5) 

= x = 0  

where k is the rate constant of the relaxation process. The 
governing equation (3) is solved by assuming constant 
diffusivity Do and using the following dimensionless 
variables: 

X 

L 
Dot kL 2 Co 

C 0 = L2 ~/) = 0 -  
(~ -- C~ Do C~ 

(6) 

where 0 is the dimensionless time, ~ is the inverse of 
the diffusion Deborah number (DEB)D, and ~ is the 
equilibrium ratio constant which represents the ratio of 
the equilibriums of the first stage to that of the second 
stage in the sorption. The solution of the dimensionless 
concentration is: 

+(l 

, - / , / ,  

cos(x/~z) exp(-~0)  (-1)" 

1 - cos x/-f (2n q- 1)27r2~ 
-/ 

c<~ 

cos (-(2n 21)rrz)  exp ( (7) 

Integration of the dimensionless concentration over 
z = 0 to - - - 1  yields the fractional weight uptake as 
function of dimensionless time 0. 

M - ~ 1 -  

+ (1 
X/~ 7r2n=°(2n+1) 2 1 (2n+l)27r2~ / 

(8) 

equation within the membrane is given as: 

OC 0 (D OC~ 
Ot - O x ~  Ox-x/ (3) 

The experimental condition gives the initial condition 

t < 0  C = 0  0 < x < L  (4) 

where L is the half-thickness of the membrane. The 
model of variable surface concentration assumes that the 
concentration at the membrane surface (x = L) jumps to 
Co as soon as the membrane contacts the vapour and 
then reaches a final concentration Coo following a first 
order relaxation process 7. Symmetry of the concentra- 
tion at the centre (x = 0) of the membrane is assumed. 

Equation (8) is intrinsically the same as the expression 
proposed by Long and Richman 7 except that different 
notations are used here. The first part on the right-hand 
side of equation (8) represents the classical Fickian 
diffusion to the quasi-equilibrium (first stage), and is the 
weight uptake for the penetrant which enters due to 
diffusion down the concentration gradient set up by 
the initial surface concentration. The second part is for 
the penetrant which enters as a result of the time 
dependence of the surface concentration change. 

Difjksion-relaxation model (Model II) 
Berens and Hopfenberg s proposed this model by 
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considering the sorption process in glassy polymers as a 
linear superposition of phenomenologically independent 
contributions from Fickian diffusion and polymeric 
relaxation. The initial diffusion-controlled sorption is 
more rapid than the long term relaxation in their 
experiments with submicron particles, permitting explicit 
separation of the entire sorption process into two 
seemingly independent mechanisms. The fractional 
uptake with the dimensionless time 0 is expressed as 

M t 8 ~ exp 

M~, - 0  1 - L ~ Z T r  ,,=o ( 2 n + l )  2 ] 

+ (1 - 0)[1 - exp(-~0) l  (9) 

for a slab geometry, such as a membrane, if a single first 
order relaxation process is considered. Where 0 is the 
same as that described in Model I but also can be 
interpreted as the fraction of the equilibrium amount 
of sorption in the unrelaxed polymer to that in the fully 
relaxed polymer, and 0 and ~ carry the same meaning 
as those in Model I. In a later comment, Joshi and 
Astarita 9 suggested that equation (9) cannot be right 
unless the characteristic diffusion time is much smaller 
than the characteristic relaxation time, that is, ~ << 1. 
This context will be discussed later in the part on 
limiting behaviours of this section and the part on 
sorption curves of  the three models in the Results and 
Discussion section. 

In the original model presented by Berens and 
Hopfenberg 8, there may be more than one relaxation 
process with different relaxation times distributed in the 
polymer matrix. The second part on the right-hand-side 
of equation (9) will be expressed as a summation of these 
parallel first order processes with various relaxation rate 
constants. However, only a single relaxation process is 
considered here for simplicity. 

Diffusion-reaction model (Model III) 
The concept of this model is not a new one. Many 

publications have proposed the basic assumptions and 
discussed some of the mathematical treatments 1°'18-2~, 
but it was not until the work by Kang et al. 1o that a clear 
mathematical solution for a spherical system was 
explicitly presented. Physically, the model is conceived 
as the so-called 'dual-mode' sorption model, in which the 
penetrant is distributed in two types of sorption modes, 
one allows penetrant to diffuse freely, and the other 
immobilizes the sorbed penetrant limiting its movement. 
The key assumption is that the transfer between two 
modes is equivalent to a first-order reversible reaction. 

k t 
CA~--" CB (10) 

k 

where CA and CB are the concentrations of the diffus- 
ing (A) and the immobilized (B) species, and k'  and k 
represent the rate constants of the forward and the 
backward reactions, respectively. The notation of 
the backward constant is the same as that of the 
relaxation rate constant used in the previous two 
models because the inverse of an immobilization reaction 
is also a kind of relaxation process of the bonding 
between the immobilized molecules and the fixing sites. 

The sites where the penetrant is immobilized can be 
either holes or irregular cavities within the glassy 
polymer structure 3 but also can be special functional 
groups which interact with the penetrant as we postu- 
lated in Part 116. The equilibrium constant for these 
reactions is defined as K(=  k ' /k) ,  and it can be thought 
to be a distribution coefficient of the penetrant in the 
two sorption modes. The differential mass balances for 
A and B within the membrane give the following 
differential equations: 

OCA _ 0 (D  OCA~ 
Ox \ Ox /I - k(KCA - CB) at (11) 

OCB (12) 
Ot -- k(KCA - CB) 

The initial and boundary conditions are: 

t < 0 CA = CB = 0 0 < x < L 

C A = C  s = C 0  x = L  (13) 

t >  0 OCA = 0  x = 0  
Ox 

where C s is defined by equilibrium of species A with 
outside vapour phase at the surface (x = L) and is 
equivalent to the Co used in equation (5) because the 
equilibrium is achieved as soon as the membrane is in 
contact with the vapour phase. Solution for equation 
(12) at the surface will lead to the following relationship 

C s = C s + C s = C0[1 + K(1 - e-kt)] (14) 

where C s and C s are the concentrations of the total 
(A and B) and the immobilized (B) species. The final 
total concentration at the surface (C s )  as well as that 
within the membrane (C~) can be obtained from 
equation (14) as t --+ oc. 

C~ = C s = C0(1 + K) (15) 

The fractional contribution of the free diffusing species 
to the final uptake, 0, is related to K by 

Co 1 
0 - C ~ -  I + K  (16) 

It has been recognized that the behaviour at the surface is 
the same as that in the variable surface-concentration 
model (Model I) ~° and the first boundary condition in 
equation (5) can be readily derived from equations (14) 
and (15). 

The governing equations (11) and (12) are solved 
similar to the procedures in Model I by assuming 
constant diffusivity D o and using the same dimensionless 
variables defined in equation (6). The method of Laplace 
transform is used to obtain the solutions 1°1s. 

The dimensionless concentrations of the free diffusing 
species (CA) and immobilized species (CB) are given, 
respectively, as 

CA(z,0) = 0 1+ s, (dq)'] 2 Ze,, 

, , = 0  \ds ],o 

(17) 
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~ (-1)n(2n + 1)7ccos (2n + 1)Tr ] 

CB(z, 0) = (1 - 0) (1 - e -~'°) + ~ ,=0 s'~(sn + ~) (-~sdO) .,,2 " (e,,,0 _ e-e0) ( 1 8 )  

where (d~/ds),. = [s2~ + 2~s n + ~p2(l + K)]/(sn + ~)2 
and sn are nonzero roots of 

s +  m 

~Ks (2n + 1)271-2 1 -- 
as K -  

s+~,  4 0 

The fractional weight uptake as a function of dimension- 
less time 0 is obtained by the integration of equations 
(15) and (16) over space. 

mt [ 2e~"° ] 
M - 

+ (1 - 61  (1 - e + " ( 1 9 )  

The result is similar to that in equation (8). The first 
part on the right-hand side of equation (19) represents 
the contribution from the free diffusing species, and the 
second part is for that from the immobilized species. 

The ~ in this model represents the square of Thiele 
modulus, a term often used in heterogeneous catalysis to 
characterize the simultaneous diffusion and reaction in 
the pores of catalyst particles, and can be considered as 
a relative magnitude of the first order reaction rate to 
the diffusion rate of a reactant. Note that the backward 
reaction rate constant is used in the definition of ~b and 
it is an indication of how fast the equilibrium of the 
reaction in equation (10) may reach. The mathematical 
treatment of this model takes into account the aspects of 
simultaneous diffusion and reaction as mentioned above, 
and thus the model is referred to as a 'diffusion reaction 
model' in this text. 

Limiting behaviours 
In above models, equations (8), (9) and (19) depict the 

sorption behaviour which combines the Fickian diffusion 
and a first order relaxation process. All of them indicate 
that if ~ is known the fractional uptake (Mt/M~.) with 
dimensionless time (0) only depends on the magnitude of 
~b, that is, the reciprocal of the diffusion Deborah 
number ((DEB)o). Therefore, the relative magnitude 
of the rates of the diffusion and the relaxation processes 
determines the behaviour of sorption. 

Although the assumptions of the models and the 
mathematical forms of equations (8), (9) and (19) are 
different, they perform similarly when ~p is much smaller 
than unity [~b << l or (DEB)D >> 11. The second term 
on the right-hand side of equation (8) reduces to 
(1 - 0)[1 - exp(-~b0)], and equation (8) becomes equa- 
tion (9). In equation (19), the eigenvalues s,,~ 
- ( 2 n +  1)27r2/4, (dq~/ds)s, ,-~ 1, and it may require 
K(= ( 1 -  0)/~) not too large to hold the relation of 

~bK << 7r2/4, and accordingly, equation (9) can be 
derived for this case. This situation confirms that the 
diffusion-relaxation model can be a good approxi- 
mation to the sorption behaviour when ~p << 18'9. 

On the other hand, equations (8), (9) and (19) perform 
very differently when ~ is much larger than unity (~ >> 1 
or (DEB)D << 1). Equation (8) reduces to the standard 
Fickian diffusion form as 

8 ~ exp(  - ( 2 n +  1) 271"20) 
Ms _ 1 -  ~ 4 (20) 
V ~  ~ = (2n + 1) 2 

It means that the surface concentration jumps to the final 
equilibrium in a very fast rate. The boundary condition 
at x = L of equation (5) becomes C = C~, as in the case 
for standard Fickian sorption. As zp >> 1, equation (9) 
gives 

-(2n _ 1)27r20 

Mt ( ) + ( 1 - 4 ) )  M -q~ 1 - 8 ~ - ~  exp + 
7r" (2n + 1) 2 

t / z 0  

(21) 

where the fractional uptake jumps to a fraction of l - 0 
in the beginning of the sorption, then follows the Fickian 
behaviour for the rest of the journey. Physically, this 
cannot be true in reality and it is probably a drawback 
of the diffusion-relaxation model. The eigenvalue is 
s,, ~ -(2n + 1)27r2/4 (1 + K) = -(2n + 1)27r20/4 and 
(dgS/ds)~,. ~ 1 +  K = 1/0 in equation (19) as ~9 >> 1, 
and it leads to 

Mt - 1 - 8 ~ exp -- 
M~ ~-5 z..., (2n + 1) 2 (22) 

n = 0  

where @ is the equilibrium ratio constant which 
represents the fraction of the free diffusing species to 
the final uptake. If the dual-mode sorption model is 
applicable, this equation describes the situation that 
the equilibrium between the two modes establishes 
instantaneously as soon as the diffusing species reaching 
the position of consideration within the membrane. 
The sorption follows Fickian-like behaviour, but it 
resembles a result which is with a diffusion coefficient 
of 0D o. For ~ equal to 1, equation (22) will be identical 
to equation (20). 

EXPERIMENTAL AND NUMERICAL ANALYSIS 

The experimental method and procedures were 
essentially the same as those described in Part 116. The 
integral sorption data of water vapour in glassy PHEMA 
membrane at 37°C were taken for analysis in this 
article. The parameters Do, 0 and ~ were identified for 
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Figure 1 Sorption kinetics of  water into a PHEMA membrane at 
37°C, where the water vapour activity and the equilibrium water content 
are 0.20 and 0.017 for (a), 0.37 and 0.036 for (b), 0.51 and 0.044 for (c), 
and 0.72 and 0.093 for (d), respectively. The symbol (O) represents 
experimental data, and the lines (- and 
. . . . .  ) represent the simulated results by Models I, II, and II1, 
respectively 

the sorption data by a nonlinear regression routine from 
the IMSL library: DUNLSF, which based on a modified 
Levenberg-Marquardt algorithm along with a finite- 
difference Jacobian 22. 

RESULTS AND DISCUSSION 

Fitting of experimental data 
The three models derived above were tested with four 

data sets from previous study on water vapour sorp- 
tion in PHEMA membrane (Figure 1). The simulations 
demonstrate that all three models are capable of 
describing the main features of the sorption process. 
The characteristic knee of the two-stage sorption 
is perfectly reproduced in Figures 1a-c, and the 
slightly sigmoidal behaviour of Figure ld is also 
shown. However, the difference among the three 
models is hardly distinguishable because of overlapping 
of curves. 

The parameters Do, q~ and ~ for these data sets were 
determined as described previously (Table 1 ). The value 
of the relaxation/reaction rate constant k is also given 
according to the equation (6) with L = 0.023 cm. For the 
same data set, the values of these parameters obtained 
from the three models are close enough, because these 
models are similarly based on the same assumptions of 
Fickian diffusion with a constant diffusion coefficient 
and first-order relaxation l°. 

According to the values of these parameters and the 
shapes of these curves, the data sets can be classified as 
two types. The a, b and c sets (refer to the data shown 
in Figures 1a-c, respectively) belong to one type, and 
the d set (refer to the data shown in Figure ld) 
is another type. From previous study, we knew that the 
sorption equilibrium of the system is below the Cg(T), 
which is the water content when the polymer has a glass- 
rubber transition at temperature T, for the former 
type 23, and above the Cg(T) for the latter type. 
Therefore the sorption of the former type is in the 
glassy state, and that of the latter type passes through the 
glass-rubber transition point. 

All of the three models give nearly a constant diffusion 
coefficient ca 5.0 x 10 -7 cm 2 s -1 for water in the glassy 
PHEMA membrane. A higher diffusion coefficient value 
is obtained from each model for the d set as the vapour 
activity is high enough to induce the glass-rubber 
transition in this case. The results may also imply that 
a diffusion coefficient of small penetrant is independent 
of its concentration in a glassy polymer as the free 
volume available for diffusion is not changed by 
sorption, but increases with its concentration in a 
rubbery polymer due to the increased free volume by 
the swelling effect of the penetrant. It should be noted 
that the experiment was operated in an integral manner, 
the diffusion coefficient as well as the rate constant of 
relaxation/reaction, which will be discussed later, is an 
average one from those for the water concentration 
between the initial (zero) and the final equilibrium. 

The magnitude of the ratio constant 4~ is slightly 
different for different models and is between 0.15 and 
0.21 for the glassy state type, and between 0.06 and 0.I 
for the type passing through the glass-rubber transition. 
The interpretation of these data is not universal and is 
dependent on the model under consideration. 

Table 1 Values of  the parameters for each model to simulate the experimental results in Figure 1 

Experimental Do k 

data set Model x 107 (cm 2 s -l ) 0 5' x 105 (s -l ) 

I 4.504 0.2018 0.0477 1.015 

a !1 4.621 0.1885 0.0466 1.018 

11I 5.290 0.1835 0.0469 1.173 

I 5.034 0.1657 0.0494 1.175 

b II 5.202 0.1513 0.0478 I. 175 

III 5.290 0.1675 0.0513 1.283 

I 4.654 0.2039 0.0965 2.122 

e ll 4.924 0.1764 0.0914 2.127 

Il i  5.290 0.1937 0.1023 2.558 

I 7.308 0.0939 0.1032 3.564 

d I! 7.624 0.0633 0.0984 3.545 

III 10.580 0.0814 0.1013 5.065 

POLYMER Volume 37 Number 17 1996 3925 



Two-stage sorption of water in PHEMA." Y.-M. Sun 

0 0 1 2 - -  

0 0 0 8  - 

C 
0 . 0 0 4  - 

,e 
0" 

oooo ' -I ' I ' I ' I 

0 0  0 2  0 .4  0 .6  0 ~  1 0 

Activity ( P/Po ) 

Figure 2 The initial surface concentration of water content in the 
P H E M A  membrane as function of water vapour activity at 37°C 

In the variable-surface concentration model, the ratio 
constant ~ represents the ratio of the equilibria of the first 
stage to that of the second stage in sorption, and the 
initial surface water content Co can be determined 
(as shown in Figure 2). The relationship between Co 
and vapour activity represents a certain sorption 
isotherm as indicated by the dashed line. The physical 
significance of Co can be conceived as the sorption 
equilibrium for the glassy polymer before relaxation. 
However, it is only a pseudo-equilibrium of the 
polymer-penetrant system since the final equilibrium 
shifts when penetrant enters the polymer matrix. 

In the diffusion-relaxation model, the ratio constant 
is the ratio of the amount of sorption at equilib- 

rium in the unrelaxed polymer to that at final equi- 
librium, which carries a similar meaning as that in the 
variable-surface concentration model but its values are 
slightly lower. 

According to the diffusion reaction model, the reac- 
tion equilibrium constant (K) or the distribution coeffi- 
cient of the two modes for a penetrant can be determined 
from the ratio constant ~ by equation (16). The 
distribution coefficient between the immobilized and 
mobilized water molecules was found to be 4.5 (an 
average of the data sets a-e) in the glassy PHEMA and 
11.3 for the set d passing through the glass rubber 
transition. The results indicate that a rubbery polymer 
may provide more sites for penetrant to stay, and for 
diffusion, the effective number of free molecules avail- 
able is much lower than that of sorbed ones. In this 
context, the distribution coefficient may not be a 
constant pending on the state of polymer structure. 

The dimensionless number ~ is the ratio of the charac- 
teristic diffusion time to the characteristic relaxation/ 
reaction time in the polymer/penetrant system. With a 
data range from 0.046 to 0.103, it indicates that the 
characteristic time of the relaxation or the exchange 
between two different modes is about 9-22 that of the 
diffusion time. The number ~ and the calculated rate 
constant k tend to be larger as the polymer is close to or 
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1 / 
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f - j 
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; t a n d a r d  F i c k i a n  

"-0.00001 

[ ' I ' I ' I ' [ ' I ' I 
0 1 2 3 4 5 6 

e 
Figure 3 Parametric study for the three models: variation of the dimensionless group (~,)) to the relationship between the fractional uptake and the 
reduced time (0) while ~ is kept constant  at 0.3. The lines ( , and ) represent the simulated results by Models 
I, II. and IIL respectively. The thick lines for the three models on the left part of  the figure represent the results for ~, = 10 000 and above 
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Figure 4 Limits o f  the diffusion-reaction model when ~', is very large: 
variation of  the dimensionless group (~) to the relationship between 
fractional uptake and reduced time (0) while ~ is kept at 10 000 or above 

passing through the glass-rubber transition point 
and may be increasing functions of penetrant concen- 
tration or activity. This postulation is reasonable 
because the system responds rapidly as the penetrant 
swells the polymer to enhance the mobility of polymer 
chains. 

In the model simulations for experimental data, 
deviation is found at a later stage of sorption, and 
becomes more obvious when the vapour activity is 
higher. The deviation can be minimized by modifying 
the models with concentration-dependent (or activity- 
dependent) diffusion coefficient or relaxation rate con- 
stant. However, this extension is out of the scope of this 
work and will not be discussed further. 

Sorption curves of the three models 
As long as ~ and ~ are fixed, a sorption curve can 

be drawn for the theoretical fractional weight uptake 
with dimensionless time 0 in each model. Figure 3 shows 
the sorption curves with different ~ for these three 
models. Since ~ only determines the height of the first 
stage, an arbitrary number of 0.3 is chosen without 
losing the generality in discussing the features of the 
sorption curves. 

Several interesting results shown in Figure 3 deserve 
attention, and reflect the limiting behaviours in the 
previous section. Primarily, all three models perform 
similar two-stage sorption behaviours when ~/~ < 0.1, and 
the sorption curves are almost the same as 4' < 0.01. In 
this case, equation (9) can be a good approximation to 
the curves for three models. When ~ is very small, the 
curves are overlapped together and a Fickian curve is 
observed up to the first stage, followed by a very long 
time to reach the second stage. When ~ > 0.3, the curves 
of the three models with the same ~ become further 
and further apart from each other as ~ increases. Some 
of the sigmoidal behaviours are observed for the curves 
with ~ about 0.3-1.When ~ is very large, the curve of 
each model approaches an asymptote, whose line thickens 
in the plot. From left to right, the three thick lines on 
the left part of Figure 3 are the graphical representation 
of equations (21), (20), and (22), respectively. 

General remarks on the three models 
The three models are similar in describing the two- 

stage sorption behaviours. All of them are based on the 
assumption of Fickian diffusion and some kind of first 
order relaxation kinetics. The outcomes of these models 
are similar when ~ is small, but deviate when ~ is large 
as we discussed above. The nature of the assumptions 
in these models also lead to some advantages and 
limitations in application of these models. 

The diffusion-relaxation model provides a simpler 
equation to describe the two-stage behaviours and can be 
a very good approximation to the other two models 
when ~ is small. However, the model fails when the 
diffusion and relaxation are coupled 9, or in other words 
the relaxation time is comparable to or smaller than 
the diffusion time. In the extreme case, equation (21) is 
not valid; therefore, the physical ground of this model 
is not as strong as the other two. Furthermore, the 
concentration profile of the penetrant within the polymer 
membrane is not revealed by this model, whereas 
equation (7) in the variable surface-concentration 
model, and equations (17) and (18) in the diffusion 
reaction model can describe the concentration profile. 

Both the variable surface-concentration model and 
the diffusion-reaction model have the same penetrant 
concentration profile with time at the surface of the 
membrane, which has been confirmed experi- 
mentally 24,25, but the physical conditions within the 
membrane are different for them. The relaxation of 
the polymer chains only takes place at the surface 
for the former model, while relaxation exists throughout 
the whole membrane for the latter. Thus, the variable 
concentration model only considers the surface relaxa- 
tion, the diffusion-reaction model also considers the 
internal relaxation. The situation may be favourable 
for the diffusion-reaction model to describe the real 
physical phenomenon within the polymer membrane. 

Depending on the ratio constant ~, an asymptote of 
the sorption curve appears as ~ is infinite for the 
diffusion-reaction model. Figure 4 shows the sorption 
curves for various values of ~ when ~ is equal to or larger 
than 10 000. Each of the curves is still Fickian-like and 
the curve becomes standard Fickian when ~ is one. Other 
than the standard Fickian curve, each of the curves looks 
like a Fickian sorption with a diffusion coefficient of 
Do. The situation implies that the apparent or measured 
diffusion coefficient may be lower than the 'true' one 
(Do), if a polymer consists of a large number of 'sites 
or holes' or functional groups, which can temporarily 
attract the penetrant to be attached even if the exchange 
rate between the immobilized molecules and mobile ones 
is very fast. This may be a cause of a concentration- 
dependent diffusion coefficient because ~ may be a 
function of the penetrant concentration in the polymer. 
It is difficult to verify this postulation unless the mean 
residence time of each molecule on the 'site' can be 
measured prior to the sorption experiment, because 
simply a curve fitting or regression analysis of sorption 
data with the equations of the current model would lead 
to a biased result. Further investigation is needed to 
clarify this point. 

CONCLUSIONS 

The variable surface-concentration model, diffusion- 
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relaxation, and dif fusion-react ion model  are reformu- 
lated in a unified approach,  Three dimensionless 
numbers  '~b, ~ and 0 '  are identified to fully characterize 
the fractional weight uptake in these models. Com-  
parisons are made by testing these models with experi- 
mental  data  and by parametr ic  studies to find out the 
advantages and the limitations o f  these models. All three 
models can satisfactorily describe the experimental data  
o f  water vapour  sorption in a glassy P H E M A  membrane  
in an integral operat ion manner ,  no matter  that  the 
polymer  is still in the glassy state or has passed through 
the g lass - rubber  transit ion point  at final equilibrium, 
The plots o f  the experimental da ta  are characterized by a 
rapid initial uptake  o f  vapour  followed by a slow down 
to final equilibrium or a slightly sigmoidal approach  to 
final equilibrium. The diffusion-relaxat ion model  pro- 
vides a good approximat ion  for the other two models 
when ~ is small, i.e. the two-stage sorpt ion prevails; 
however,  it is not  applicable to the situation when ~ is 
larger than or  close to unity, i.e. the characteristic 
diffusion time is longer than or  comparable  to the 
characteristic relaxation time. Both  the variable surface- 
concentra t ion model  and the dif fusion-react ion model  
are derived f rom the differential mass balance o f  
penetrant  with similar boundary  conditions;  however, 
the diffusion-react ion model  takes internal relaxation 
into considerat ion for better physical significance, but  its 
analytic solution is more  complicated, The diffusion-  
reaction model  also suggests that  the apparent  or 
measured diffusion coefficient may  be lower than a 
' t rue '  one if a polymer  possesses a large number  o f  'sites 
or holes' for penetrant  to reside in or  functional  groups 
to immobilize the penetrant  even if the exchange rate 
between the immobilized molecules and mobile ones is 
very fast and Fickian-like sorpt ion is observed. F r o m  
the fitted values o f  the diffusion coefficient (Do), 
relaxation/reaction time constant  (k), and the equili- 
br ium ratio constant  (~5) or the distribution coefficient 
(K, K -- (1 - ~b)/~5), they may  depend on the state o f  the 
polymer  or the concentra t ion or activity of  the penetrant.  
A natural  extension of  this work  may  assume history- 
dependent diffusion coefficient, rate constant ,  or ratio 
constant  in the models for better correlat ion with the 
experimental data. 
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